Metamath Proof Explorer


Theorem ralbiia

Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000)

Ref Expression
Hypothesis ralbiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion ralbiia ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralbiia.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 1 pm5.74i ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐴𝜓 ) )
3 2 ralbii2 ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐴 𝜓 )