Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexbii2.1 | |- ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) ) |
|
Assertion | rexbii2 | |- ( E. x e. A ph <-> E. x e. B ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbii2.1 | |- ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) ) |
|
2 | 1 | exbii | |- ( E. x ( x e. A /\ ph ) <-> E. x ( x e. B /\ ps ) ) |
3 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
4 | df-rex | |- ( E. x e. B ps <-> E. x ( x e. B /\ ps ) ) |
|
5 | 2 3 4 | 3bitr4i | |- ( E. x e. A ph <-> E. x e. B ps ) |