Metamath Proof Explorer


Theorem rexbii2

Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004)

Ref Expression
Hypothesis rexbii2.1
|- ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) )
Assertion rexbii2
|- ( E. x e. A ph <-> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 rexbii2.1
 |-  ( ( x e. A /\ ph ) <-> ( x e. B /\ ps ) )
2 1 exbii
 |-  ( E. x ( x e. A /\ ph ) <-> E. x ( x e. B /\ ps ) )
3 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
4 df-rex
 |-  ( E. x e. B ps <-> E. x ( x e. B /\ ps ) )
5 2 3 4 3bitr4i
 |-  ( E. x e. A ph <-> E. x e. B ps )