Description: Inference adding different restricted existential quantifiers to each side of an equivalence. (Contributed by NM, 4-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rexbii2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
| Assertion | rexbii2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbii2.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
| 5 | 2 3 4 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 𝜓 ) |