| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-sup | 
							⊢ sup ( 𝐵 ,  𝐴 ,  𝑅 )  =  ∪  { 𝑥  ∈  𝐴  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							dfrab3 | 
							⊢ { 𝑥  ∈  𝐴  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) }  =  ( 𝐴  ∩  { 𝑥  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) } )  | 
						
						
							| 3 | 
							
								
							 | 
							eqabcb | 
							⊢ ( { 𝑥  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) }  =  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  ↔  ∀ 𝑥 ( ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) )  ↔  𝑥  ∈  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑥  ∈  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  ↔  ( 𝑥  ∈  V  ∧  ¬  𝑥  ∈  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpbiran | 
							⊢ ( 𝑥  ∈  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  ↔  ¬  𝑥  ∈  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 7 | 
							
								4
							 | 
							elima | 
							⊢ ( 𝑥  ∈  ( ◡ 𝑅  “  𝐵 )  ↔  ∃ 𝑦  ∈  𝐵 𝑦 ◡ 𝑅 𝑥 )  | 
						
						
							| 8 | 
							
								
							 | 
							dfrex2 | 
							⊢ ( ∃ 𝑦  ∈  𝐵 𝑦 ◡ 𝑅 𝑥  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitri | 
							⊢ ( 𝑥  ∈  ( ◡ 𝑅  “  𝐵 )  ↔  ¬  ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥 )  | 
						
						
							| 10 | 
							
								4
							 | 
							elima | 
							⊢ ( 𝑥  ∈  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) )  ↔  ∃ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) 𝑦 𝑅 𝑥 )  | 
						
						
							| 11 | 
							
								
							 | 
							dfrex2 | 
							⊢ ( ∃ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) 𝑦 𝑅 𝑥  ↔  ¬  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							bitri | 
							⊢ ( 𝑥  ∈  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) )  ↔  ¬  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							orbi12i | 
							⊢ ( ( 𝑥  ∈  ( ◡ 𝑅  “  𝐵 )  ∨  𝑥  ∈  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) )  ↔  ( ¬  ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ∨  ¬  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) )  ↔  ( 𝑥  ∈  ( ◡ 𝑅  “  𝐵 )  ∨  𝑥  ∈  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ianor | 
							⊢ ( ¬  ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 )  ↔  ( ¬  ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ∨  ¬  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							3bitr4i | 
							⊢ ( 𝑥  ∈  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) )  ↔  ¬  ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							con2bii | 
							⊢ ( ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 )  ↔  ¬  𝑥  ∈  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 19 | 
							
								18 4
							 | 
							brcnv | 
							⊢ ( 𝑦 ◡ 𝑅 𝑥  ↔  𝑥 𝑅 𝑦 )  | 
						
						
							| 20 | 
							
								19
							 | 
							notbii | 
							⊢ ( ¬  𝑦 ◡ 𝑅 𝑥  ↔  ¬  𝑥 𝑅 𝑦 )  | 
						
						
							| 21 | 
							
								20
							 | 
							ralbii | 
							⊢ ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ↔  ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦 )  | 
						
						
							| 22 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 ) )  →  ¬  𝑦 𝑅 𝑥 )  ↔  ( 𝑦  ∈  𝐴  →  ( ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 )  →  ¬  𝑦 𝑅 𝑥 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eldif | 
							⊢ ( 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) )  ↔  ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imbi1i | 
							⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) )  →  ¬  𝑦 𝑅 𝑥 )  ↔  ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 ) )  →  ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 25 | 
							
								18
							 | 
							elima | 
							⊢ ( 𝑦  ∈  ( ◡ 𝑅  “  𝐵 )  ↔  ∃ 𝑧  ∈  𝐵 𝑧 ◡ 𝑅 𝑦 )  | 
						
						
							| 26 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 27 | 
							
								26 18
							 | 
							brcnv | 
							⊢ ( 𝑧 ◡ 𝑅 𝑦  ↔  𝑦 𝑅 𝑧 )  | 
						
						
							| 28 | 
							
								27
							 | 
							rexbii | 
							⊢ ( ∃ 𝑧  ∈  𝐵 𝑧 ◡ 𝑅 𝑦  ↔  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							bitri | 
							⊢ ( 𝑦  ∈  ( ◡ 𝑅  “  𝐵 )  ↔  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 )  | 
						
						
							| 30 | 
							
								29
							 | 
							imbi2i | 
							⊢ ( ( 𝑦 𝑅 𝑥  →  𝑦  ∈  ( ◡ 𝑅  “  𝐵 ) )  ↔  ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							con34b | 
							⊢ ( ( 𝑦 𝑅 𝑥  →  𝑦  ∈  ( ◡ 𝑅  “  𝐵 ) )  ↔  ( ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 )  →  ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							bitr3i | 
							⊢ ( ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 )  ↔  ( ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 )  →  ¬  𝑦 𝑅 𝑥 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							imbi2i | 
							⊢ ( ( 𝑦  ∈  𝐴  →  ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) )  ↔  ( 𝑦  ∈  𝐴  →  ( ¬  𝑦  ∈  ( ◡ 𝑅  “  𝐵 )  →  ¬  𝑦 𝑅 𝑥 ) ) )  | 
						
						
							| 34 | 
							
								22 24 33
							 | 
							3bitr4i | 
							⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) )  →  ¬  𝑦 𝑅 𝑥 )  ↔  ( 𝑦  ∈  𝐴  →  ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ralbii2 | 
							⊢ ( ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) )  | 
						
						
							| 36 | 
							
								21 35
							 | 
							anbi12i | 
							⊢ ( ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 ◡ 𝑅 𝑥  ∧  ∀ 𝑦  ∈  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ¬  𝑦 𝑅 𝑥 )  ↔  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) )  | 
						
						
							| 37 | 
							
								6 17 36
							 | 
							3bitr2ri | 
							⊢ ( ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) )  ↔  𝑥  ∈  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) ) )  | 
						
						
							| 38 | 
							
								3 37
							 | 
							mpgbir | 
							⊢ { 𝑥  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) }  =  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ineq2i | 
							⊢ ( 𝐴  ∩  { 𝑥  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) } )  =  ( 𝐴  ∩  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							invdif | 
							⊢ ( 𝐴  ∩  ( V  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) ) )  =  ( 𝐴  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							eqtri | 
							⊢ ( 𝐴  ∩  { 𝑥  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) } )  =  ( 𝐴  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 42 | 
							
								2 41
							 | 
							eqtri | 
							⊢ { 𝑥  ∈  𝐴  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) }  =  ( 𝐴  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							unieqi | 
							⊢ ∪  { 𝑥  ∈  𝐴  ∣  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 𝑅 𝑧 ) ) }  =  ∪  ( 𝐴  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  | 
						
						
							| 44 | 
							
								1 43
							 | 
							eqtri | 
							⊢ sup ( 𝐵 ,  𝐴 ,  𝑅 )  =  ∪  ( 𝐴  ∖  ( ( ◡ 𝑅  “  𝐵 )  ∪  ( 𝑅  “  ( 𝐴  ∖  ( ◡ 𝑅  “  𝐵 ) ) ) ) )  |