| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cA | 
							⊢ 𝐴  | 
						
						
							| 1 | 
							
								
							 | 
							cB | 
							⊢ 𝐵  | 
						
						
							| 2 | 
							
								
							 | 
							cR | 
							⊢ 𝑅  | 
						
						
							| 3 | 
							
								0 1 2
							 | 
							csup | 
							⊢ sup ( 𝐴 ,  𝐵 ,  𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 5 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 6 | 
							
								4
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 7 | 
							
								5
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 8 | 
							
								6 7 2
							 | 
							wbr | 
							⊢ 𝑥 𝑅 𝑦  | 
						
						
							| 9 | 
							
								8
							 | 
							wn | 
							⊢ ¬  𝑥 𝑅 𝑦  | 
						
						
							| 10 | 
							
								9 5 0
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝑅 𝑦  | 
						
						
							| 11 | 
							
								7 6 2
							 | 
							wbr | 
							⊢ 𝑦 𝑅 𝑥  | 
						
						
							| 12 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 13 | 
							
								12
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 14 | 
							
								7 13 2
							 | 
							wbr | 
							⊢ 𝑦 𝑅 𝑧  | 
						
						
							| 15 | 
							
								14 12 0
							 | 
							wrex | 
							⊢ ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧  | 
						
						
							| 16 | 
							
								11 15
							 | 
							wi | 
							⊢ ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧 )  | 
						
						
							| 17 | 
							
								16 5 1
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝐵 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧 )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							wa | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧 ) )  | 
						
						
							| 19 | 
							
								18 4 1
							 | 
							crab | 
							⊢ { 𝑥  ∈  𝐵  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧 ) ) }  | 
						
						
							| 20 | 
							
								19
							 | 
							cuni | 
							⊢ ∪  { 𝑥  ∈  𝐵  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧 ) ) }  | 
						
						
							| 21 | 
							
								3 20
							 | 
							wceq | 
							⊢ sup ( 𝐴 ,  𝐵 ,  𝑅 )  =  ∪  { 𝑥  ∈  𝐵  ∣  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 𝑅 𝑧 ) ) }  |