Metamath Proof Explorer


Theorem invdif

Description: Intersection with universal complement. Remark in Stoll p. 20. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion invdif AVB=AB

Proof

Step Hyp Ref Expression
1 dfin2 AVB=AVVB
2 ddif VVB=B
3 2 difeq2i AVVB=AB
4 1 3 eqtri AVB=AB