Metamath Proof Explorer


Definition df-mulg

Description: Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Assertion df-mulg 𝑔=gVn,xBasegifn=00gseq1+g×x/sif0<nsninvggsn

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmg class𝑔
1 vg setvarg
2 cvv classV
3 vn setvarn
4 cz class
5 vx setvarx
6 cbs classBase
7 1 cv setvarg
8 7 6 cfv classBaseg
9 3 cv setvarn
10 cc0 class0
11 9 10 wceq wffn=0
12 c0g class0𝑔
13 7 12 cfv class0g
14 c1 class1
15 cplusg class+𝑔
16 7 15 cfv class+g
17 cn class
18 5 cv setvarx
19 18 csn classx
20 17 19 cxp class×x
21 16 20 14 cseq classseq1+g×x
22 vs setvars
23 clt class<
24 10 9 23 wbr wff0<n
25 22 cv setvars
26 9 25 cfv classsn
27 cminusg classinvg
28 7 27 cfv classinvgg
29 9 cneg classn
30 29 25 cfv classsn
31 30 28 cfv classinvggsn
32 24 26 31 cif classif0<nsninvggsn
33 22 21 32 csb classseq1+g×x/sif0<nsninvggsn
34 11 13 33 cif classifn=00gseq1+g×x/sif0<nsninvggsn
35 3 5 4 8 34 cmpo classn,xBasegifn=00gseq1+g×x/sif0<nsninvggsn
36 1 2 35 cmpt classgVn,xBasegifn=00gseq1+g×x/sif0<nsninvggsn
37 0 36 wceq wff𝑔=gVn,xBasegifn=00gseq1+g×x/sif0<nsninvggsn