Metamath Proof Explorer


Theorem fvconst2g

Description: The value of a constant function. (Contributed by NM, 20-Aug-2005)

Ref Expression
Assertion fvconst2g BDCAA×BC=B

Proof

Step Hyp Ref Expression
1 fconstg BDA×B:AB
2 fvconst A×B:ABCAA×BC=B
3 1 2 sylan BDCAA×BC=B