Metamath Proof Explorer


Theorem fconst2g

Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007)

Ref Expression
Assertion fconst2g BCF:ABF=A×B

Proof

Step Hyp Ref Expression
1 fvconst F:ABxAFx=B
2 1 adantlr F:ABBCxAFx=B
3 fvconst2g BCxAA×Bx=B
4 3 adantll F:ABBCxAA×Bx=B
5 2 4 eqtr4d F:ABBCxAFx=A×Bx
6 5 ralrimiva F:ABBCxAFx=A×Bx
7 ffn F:ABFFnA
8 fnconstg BCA×BFnA
9 eqfnfv FFnAA×BFnAF=A×BxAFx=A×Bx
10 7 8 9 syl2an F:ABBCF=A×BxAFx=A×Bx
11 6 10 mpbird F:ABBCF=A×B
12 11 expcom BCF:ABF=A×B
13 fconstg BCA×B:AB
14 feq1 F=A×BF:ABA×B:AB
15 13 14 syl5ibrcom BCF=A×BF:AB
16 12 15 impbid BCF:ABF=A×B