Metamath Proof Explorer


Theorem fnconstg

Description: A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014)

Ref Expression
Assertion fnconstg BVA×BFnA

Proof

Step Hyp Ref Expression
1 fconstg BVA×B:AB
2 1 ffnd BVA×BFnA