Metamath Proof Explorer


Theorem fconst6g

Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fconst6g B C A × B : A C

Proof

Step Hyp Ref Expression
1 fconstg B C A × B : A B
2 snssi B C B C
3 1 2 fssd B C A × B : A C