Metamath Proof Explorer


Theorem fconst6

Description: A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009) (Revised by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis fconst6.1 BC
Assertion fconst6 A×B:AC

Proof

Step Hyp Ref Expression
1 fconst6.1 BC
2 fconst6g BCA×B:AC
3 1 2 ax-mp A×B:AC