Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvconst2
Next ⟩
fconst2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvconst2
Description:
The value of a constant function.
(Contributed by
NM
, 16-Apr-2005)
Ref
Expression
Hypothesis
fvconst2.1
⊢
B
∈
V
Assertion
fvconst2
⊢
C
∈
A
→
A
×
B
⁡
C
=
B
Proof
Step
Hyp
Ref
Expression
1
fvconst2.1
⊢
B
∈
V
2
fvconst2g
⊢
B
∈
V
∧
C
∈
A
→
A
×
B
⁡
C
=
B
3
1
2
mpan
⊢
C
∈
A
→
A
×
B
⁡
C
=
B