Metamath Proof Explorer


Theorem fconst2

Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999)

Ref Expression
Hypothesis fvconst2.1 BV
Assertion fconst2 F:ABF=A×B

Proof

Step Hyp Ref Expression
1 fvconst2.1 BV
2 fconst2g BVF:ABF=A×B
3 1 2 ax-mp F:ABF=A×B