Metamath Proof Explorer


Theorem fconst2

Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999)

Ref Expression
Hypothesis fvconst2.1 𝐵 ∈ V
Assertion fconst2 ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 fvconst2.1 𝐵 ∈ V
2 fconst2g ( 𝐵 ∈ V → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) )
3 1 2 ax-mp ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) )