Metamath Proof Explorer


Theorem fvconst2

Description: The value of a constant function. (Contributed by NM, 16-Apr-2005)

Ref Expression
Hypothesis fvconst2.1 𝐵 ∈ V
Assertion fvconst2 ( 𝐶𝐴 → ( ( 𝐴 × { 𝐵 } ) ‘ 𝐶 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 fvconst2.1 𝐵 ∈ V
2 fvconst2g ( ( 𝐵 ∈ V ∧ 𝐶𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝐶 ) = 𝐵 )
3 1 2 mpan ( 𝐶𝐴 → ( ( 𝐴 × { 𝐵 } ) ‘ 𝐶 ) = 𝐵 )