Metamath Proof Explorer


Theorem mulgnn0subcl

Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mulgnnsubcl.b B = Base G
mulgnnsubcl.t · ˙ = G
mulgnnsubcl.p + ˙ = + G
mulgnnsubcl.g φ G V
mulgnnsubcl.s φ S B
mulgnnsubcl.c φ x S y S x + ˙ y S
mulgnn0subcl.z 0 ˙ = 0 G
mulgnn0subcl.c φ 0 ˙ S
Assertion mulgnn0subcl φ N 0 X S N · ˙ X S

Proof

Step Hyp Ref Expression
1 mulgnnsubcl.b B = Base G
2 mulgnnsubcl.t · ˙ = G
3 mulgnnsubcl.p + ˙ = + G
4 mulgnnsubcl.g φ G V
5 mulgnnsubcl.s φ S B
6 mulgnnsubcl.c φ x S y S x + ˙ y S
7 mulgnn0subcl.z 0 ˙ = 0 G
8 mulgnn0subcl.c φ 0 ˙ S
9 1 2 3 4 5 6 mulgnnsubcl φ N X S N · ˙ X S
10 9 3expa φ N X S N · ˙ X S
11 10 an32s φ X S N N · ˙ X S
12 11 3adantl2 φ N 0 X S N N · ˙ X S
13 oveq1 N = 0 N · ˙ X = 0 · ˙ X
14 5 3ad2ant1 φ N 0 X S S B
15 simp3 φ N 0 X S X S
16 14 15 sseldd φ N 0 X S X B
17 1 7 2 mulg0 X B 0 · ˙ X = 0 ˙
18 16 17 syl φ N 0 X S 0 · ˙ X = 0 ˙
19 13 18 sylan9eqr φ N 0 X S N = 0 N · ˙ X = 0 ˙
20 8 3ad2ant1 φ N 0 X S 0 ˙ S
21 20 adantr φ N 0 X S N = 0 0 ˙ S
22 19 21 eqeltrd φ N 0 X S N = 0 N · ˙ X S
23 simp2 φ N 0 X S N 0
24 elnn0 N 0 N N = 0
25 23 24 sylib φ N 0 X S N N = 0
26 12 22 25 mpjaodan φ N 0 X S N · ˙ X S