Metamath Proof Explorer


Theorem mulgnn0subcl

Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mulgnnsubcl.b B=BaseG
mulgnnsubcl.t ·˙=G
mulgnnsubcl.p +˙=+G
mulgnnsubcl.g φGV
mulgnnsubcl.s φSB
mulgnnsubcl.c φxSySx+˙yS
mulgnn0subcl.z 0˙=0G
mulgnn0subcl.c φ0˙S
Assertion mulgnn0subcl φN0XSN·˙XS

Proof

Step Hyp Ref Expression
1 mulgnnsubcl.b B=BaseG
2 mulgnnsubcl.t ·˙=G
3 mulgnnsubcl.p +˙=+G
4 mulgnnsubcl.g φGV
5 mulgnnsubcl.s φSB
6 mulgnnsubcl.c φxSySx+˙yS
7 mulgnn0subcl.z 0˙=0G
8 mulgnn0subcl.c φ0˙S
9 1 2 3 4 5 6 mulgnnsubcl φNXSN·˙XS
10 9 3expa φNXSN·˙XS
11 10 an32s φXSNN·˙XS
12 11 3adantl2 φN0XSNN·˙XS
13 oveq1 N=0N·˙X=0·˙X
14 5 3ad2ant1 φN0XSSB
15 simp3 φN0XSXS
16 14 15 sseldd φN0XSXB
17 1 7 2 mulg0 XB0·˙X=0˙
18 16 17 syl φN0XS0·˙X=0˙
19 13 18 sylan9eqr φN0XSN=0N·˙X=0˙
20 8 3ad2ant1 φN0XS0˙S
21 20 adantr φN0XSN=00˙S
22 19 21 eqeltrd φN0XSN=0N·˙XS
23 simp2 φN0XSN0
24 elnn0 N0NN=0
25 23 24 sylib φN0XSNN=0
26 12 22 25 mpjaodan φN0XSN·˙XS