Description: Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgnnsubcl.b | |
|
mulgnnsubcl.t | |
||
mulgnnsubcl.p | |
||
mulgnnsubcl.g | |
||
mulgnnsubcl.s | |
||
mulgnnsubcl.c | |
||
mulgnn0subcl.z | |
||
mulgnn0subcl.c | |
||
Assertion | mulgnn0subcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | |
|
2 | mulgnnsubcl.t | |
|
3 | mulgnnsubcl.p | |
|
4 | mulgnnsubcl.g | |
|
5 | mulgnnsubcl.s | |
|
6 | mulgnnsubcl.c | |
|
7 | mulgnn0subcl.z | |
|
8 | mulgnn0subcl.c | |
|
9 | 1 2 3 4 5 6 | mulgnnsubcl | |
10 | 9 | 3expa | |
11 | 10 | an32s | |
12 | 11 | 3adantl2 | |
13 | oveq1 | |
|
14 | 5 | 3ad2ant1 | |
15 | simp3 | |
|
16 | 14 15 | sseldd | |
17 | 1 7 2 | mulg0 | |
18 | 16 17 | syl | |
19 | 13 18 | sylan9eqr | |
20 | 8 | 3ad2ant1 | |
21 | 20 | adantr | |
22 | 19 21 | eqeltrd | |
23 | simp2 | |
|
24 | elnn0 | |
|
25 | 23 24 | sylib | |
26 | 12 22 25 | mpjaodan | |