Metamath Proof Explorer


Theorem mulgsubcl

Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mulgnnsubcl.b B=BaseG
mulgnnsubcl.t ·˙=G
mulgnnsubcl.p +˙=+G
mulgnnsubcl.g φGV
mulgnnsubcl.s φSB
mulgnnsubcl.c φxSySx+˙yS
mulgnn0subcl.z 0˙=0G
mulgnn0subcl.c φ0˙S
mulgsubcl.i I=invgG
mulgsubcl.c φxSIxS
Assertion mulgsubcl φNXSN·˙XS

Proof

Step Hyp Ref Expression
1 mulgnnsubcl.b B=BaseG
2 mulgnnsubcl.t ·˙=G
3 mulgnnsubcl.p +˙=+G
4 mulgnnsubcl.g φGV
5 mulgnnsubcl.s φSB
6 mulgnnsubcl.c φxSySx+˙yS
7 mulgnn0subcl.z 0˙=0G
8 mulgnn0subcl.c φ0˙S
9 mulgsubcl.i I=invgG
10 mulgsubcl.c φxSIxS
11 1 2 3 4 5 6 7 8 mulgnn0subcl φN0XSN·˙XS
12 11 3expa φN0XSN·˙XS
13 12 an32s φXSN0N·˙XS
14 13 3adantl2 φNXSN0N·˙XS
15 simp2 φNXSN
16 15 adantr φNXSNN
17 16 zcnd φNXSNN
18 17 negnegd φNXSN- N=N
19 18 oveq1d φNXSN- N·˙X=N·˙X
20 id NN
21 5 3ad2ant1 φNXSSB
22 simp3 φNXSXS
23 21 22 sseldd φNXSXB
24 1 2 9 mulgnegnn NXB- N·˙X=I- N·˙X
25 20 23 24 syl2anr φNXSN- N·˙X=I- N·˙X
26 19 25 eqtr3d φNXSNN·˙X=I- N·˙X
27 fveq2 x=- N·˙XIx=I- N·˙X
28 27 eleq1d x=- N·˙XIxSI- N·˙XS
29 10 ralrimiva φxSIxS
30 29 3ad2ant1 φNXSxSIxS
31 30 adantr φNXSNxSIxS
32 1 2 3 4 5 6 mulgnnsubcl φNXS- N·˙XS
33 32 3expa φNXS- N·˙XS
34 33 an32s φXSN- N·˙XS
35 34 3adantl2 φNXSN- N·˙XS
36 28 31 35 rspcdva φNXSNI- N·˙XS
37 26 36 eqeltrd φNXSNN·˙XS
38 37 adantrl φNXSNNN·˙XS
39 elznn0nn NN0NN
40 15 39 sylib φNXSN0NN
41 14 38 40 mpjaodan φNXSN·˙XS