Metamath Proof Explorer


Theorem mulgsubcl

Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mulgnnsubcl.b B = Base G
mulgnnsubcl.t · ˙ = G
mulgnnsubcl.p + ˙ = + G
mulgnnsubcl.g φ G V
mulgnnsubcl.s φ S B
mulgnnsubcl.c φ x S y S x + ˙ y S
mulgnn0subcl.z 0 ˙ = 0 G
mulgnn0subcl.c φ 0 ˙ S
mulgsubcl.i I = inv g G
mulgsubcl.c φ x S I x S
Assertion mulgsubcl φ N X S N · ˙ X S

Proof

Step Hyp Ref Expression
1 mulgnnsubcl.b B = Base G
2 mulgnnsubcl.t · ˙ = G
3 mulgnnsubcl.p + ˙ = + G
4 mulgnnsubcl.g φ G V
5 mulgnnsubcl.s φ S B
6 mulgnnsubcl.c φ x S y S x + ˙ y S
7 mulgnn0subcl.z 0 ˙ = 0 G
8 mulgnn0subcl.c φ 0 ˙ S
9 mulgsubcl.i I = inv g G
10 mulgsubcl.c φ x S I x S
11 1 2 3 4 5 6 7 8 mulgnn0subcl φ N 0 X S N · ˙ X S
12 11 3expa φ N 0 X S N · ˙ X S
13 12 an32s φ X S N 0 N · ˙ X S
14 13 3adantl2 φ N X S N 0 N · ˙ X S
15 simp2 φ N X S N
16 15 adantr φ N X S N N
17 16 zcnd φ N X S N N
18 17 negnegd φ N X S N -N = N
19 18 oveq1d φ N X S N -N · ˙ X = N · ˙ X
20 id N N
21 5 3ad2ant1 φ N X S S B
22 simp3 φ N X S X S
23 21 22 sseldd φ N X S X B
24 1 2 9 mulgnegnn N X B -N · ˙ X = I -N · ˙ X
25 20 23 24 syl2anr φ N X S N -N · ˙ X = I -N · ˙ X
26 19 25 eqtr3d φ N X S N N · ˙ X = I -N · ˙ X
27 fveq2 x = -N · ˙ X I x = I -N · ˙ X
28 27 eleq1d x = -N · ˙ X I x S I -N · ˙ X S
29 10 ralrimiva φ x S I x S
30 29 3ad2ant1 φ N X S x S I x S
31 30 adantr φ N X S N x S I x S
32 1 2 3 4 5 6 mulgnnsubcl φ N X S -N · ˙ X S
33 32 3expa φ N X S -N · ˙ X S
34 33 an32s φ X S N -N · ˙ X S
35 34 3adantl2 φ N X S N -N · ˙ X S
36 28 31 35 rspcdva φ N X S N I -N · ˙ X S
37 26 36 eqeltrd φ N X S N N · ˙ X S
38 37 adantrl φ N X S N N N · ˙ X S
39 elznn0nn N N 0 N N
40 15 39 sylib φ N X S N 0 N N
41 14 38 40 mpjaodan φ N X S N · ˙ X S