Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgnnsubcl.b | |
|
mulgnnsubcl.t | |
||
mulgnnsubcl.p | |
||
mulgnnsubcl.g | |
||
mulgnnsubcl.s | |
||
mulgnnsubcl.c | |
||
mulgnn0subcl.z | |
||
mulgnn0subcl.c | |
||
mulgsubcl.i | |
||
mulgsubcl.c | |
||
Assertion | mulgsubcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnnsubcl.b | |
|
2 | mulgnnsubcl.t | |
|
3 | mulgnnsubcl.p | |
|
4 | mulgnnsubcl.g | |
|
5 | mulgnnsubcl.s | |
|
6 | mulgnnsubcl.c | |
|
7 | mulgnn0subcl.z | |
|
8 | mulgnn0subcl.c | |
|
9 | mulgsubcl.i | |
|
10 | mulgsubcl.c | |
|
11 | 1 2 3 4 5 6 7 8 | mulgnn0subcl | |
12 | 11 | 3expa | |
13 | 12 | an32s | |
14 | 13 | 3adantl2 | |
15 | simp2 | |
|
16 | 15 | adantr | |
17 | 16 | zcnd | |
18 | 17 | negnegd | |
19 | 18 | oveq1d | |
20 | id | |
|
21 | 5 | 3ad2ant1 | |
22 | simp3 | |
|
23 | 21 22 | sseldd | |
24 | 1 2 9 | mulgnegnn | |
25 | 20 23 24 | syl2anr | |
26 | 19 25 | eqtr3d | |
27 | fveq2 | |
|
28 | 27 | eleq1d | |
29 | 10 | ralrimiva | |
30 | 29 | 3ad2ant1 | |
31 | 30 | adantr | |
32 | 1 2 3 4 5 6 | mulgnnsubcl | |
33 | 32 | 3expa | |
34 | 33 | an32s | |
35 | 34 | 3adantl2 | |
36 | 28 31 35 | rspcdva | |
37 | 26 36 | eqeltrd | |
38 | 37 | adantrl | |
39 | elznn0nn | |
|
40 | 15 39 | sylib | |
41 | 14 38 40 | mpjaodan | |