Metamath Proof Explorer


Theorem mulgnncl

Description: Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014) (Revised by AV, 29-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b B=BaseG
mulgnncl.t ·˙=G
Assertion mulgnncl GMgmNXBN·˙XB

Proof

Step Hyp Ref Expression
1 mulgnncl.b B=BaseG
2 mulgnncl.t ·˙=G
3 eqid +G=+G
4 id GMgmGMgm
5 ssidd GMgmBB
6 1 3 mgmcl GMgmxByBx+GyB
7 1 2 3 4 5 6 mulgnnsubcl GMgmNXBN·˙XB