Metamath Proof Explorer


Theorem negnegd

Description: A number is equal to the negative of its negative. Theorem I.4 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis negidd.1 φA
Assertion negnegd φA=A

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 negneg AA=A
3 1 2 syl φA=A