| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgnnsubcl.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgnnsubcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
mulgnnsubcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 5 |
|
mulgnnsubcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 6 |
|
mulgnnsubcl.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 7 |
|
mulgnn0subcl.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 8 |
|
mulgnn0subcl.c |
⊢ ( 𝜑 → 0 ∈ 𝑆 ) |
| 9 |
|
mulgsubcl.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 10 |
|
mulgsubcl.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 11 |
1 2 3 4 5 6 7 8
|
mulgnn0subcl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 12 |
11
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 13 |
12
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 14 |
13
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 15 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℤ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 17 |
16
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 18 |
17
|
negnegd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → - - 𝑁 = 𝑁 ) |
| 19 |
18
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( - - 𝑁 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 20 |
|
id |
⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ ) |
| 21 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 22 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 23 |
21 22
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 24 |
1 2 9
|
mulgnegnn |
⊢ ( ( - 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 25 |
20 23 24
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( - - 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 26 |
19 25
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑥 = ( - 𝑁 · 𝑋 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑥 = ( - 𝑁 · 𝑋 ) → ( ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ∈ 𝑆 ) ) |
| 29 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) |
| 32 |
1 2 3 4 5 6
|
mulgnnsubcl |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( - 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 33 |
32
|
3expa |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ ) ∧ 𝑋 ∈ 𝑆 ) → ( - 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 34 |
33
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( - 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 35 |
34
|
3adantl2 |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( - 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 36 |
28 31 35
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( 𝐼 ‘ ( - 𝑁 · 𝑋 ) ) ∈ 𝑆 ) |
| 37 |
26 36
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ - 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 38 |
37
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| 39 |
|
elznn0nn |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 40 |
15 39
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
| 41 |
14 38 40
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |