Metamath Proof Explorer


Theorem an32s

Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996)

Ref Expression
Hypothesis an32s.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
Assertion an32s ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 an32s.1 ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
2 an32 ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
3 2 1 sylbi ( ( ( 𝜑𝜒 ) ∧ 𝜓 ) → 𝜃 )