Metamath Proof Explorer


Theorem an32s

Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996)

Ref Expression
Hypothesis an32s.1
|- ( ( ( ph /\ ps ) /\ ch ) -> th )
Assertion an32s
|- ( ( ( ph /\ ch ) /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 an32s.1
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
2 an32
 |-  ( ( ( ph /\ ch ) /\ ps ) <-> ( ( ph /\ ps ) /\ ch ) )
3 2 1 sylbi
 |-  ( ( ( ph /\ ch ) /\ ps ) -> th )