Metamath Proof Explorer


Theorem mulg2

Description: Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses mulg1.b B=BaseG
mulg1.m ·˙=G
mulgnnp1.p +˙=+G
Assertion mulg2 XB2·˙X=X+˙X

Proof

Step Hyp Ref Expression
1 mulg1.b B=BaseG
2 mulg1.m ·˙=G
3 mulgnnp1.p +˙=+G
4 df-2 2=1+1
5 4 oveq1i 2·˙X=1+1·˙X
6 1nn 1
7 1 2 3 mulgnnp1 1XB1+1·˙X=1·˙X+˙X
8 6 7 mpan XB1+1·˙X=1·˙X+˙X
9 5 8 eqtrid XB2·˙X=1·˙X+˙X
10 1 2 mulg1 XB1·˙X=X
11 10 oveq1d XB1·˙X+˙X=X+˙X
12 9 11 eqtrd XB2·˙X=X+˙X