Metamath Proof Explorer


Theorem mulgnnp1

Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg1.b B=BaseG
mulg1.m ·˙=G
mulgnnp1.p +˙=+G
Assertion mulgnnp1 NXBN+1·˙X=N·˙X+˙X

Proof

Step Hyp Ref Expression
1 mulg1.b B=BaseG
2 mulg1.m ·˙=G
3 mulgnnp1.p +˙=+G
4 simpl NXBN
5 nnuz =1
6 4 5 eleqtrdi NXBN1
7 seqp1 N1seq1+˙×XN+1=seq1+˙×XN+˙×XN+1
8 6 7 syl NXBseq1+˙×XN+1=seq1+˙×XN+˙×XN+1
9 id XBXB
10 peano2nn NN+1
11 fvconst2g XBN+1×XN+1=X
12 9 10 11 syl2anr NXB×XN+1=X
13 12 oveq2d NXBseq1+˙×XN+˙×XN+1=seq1+˙×XN+˙X
14 8 13 eqtrd NXBseq1+˙×XN+1=seq1+˙×XN+˙X
15 eqid seq1+˙×X=seq1+˙×X
16 1 3 2 15 mulgnn N+1XBN+1·˙X=seq1+˙×XN+1
17 10 16 sylan NXBN+1·˙X=seq1+˙×XN+1
18 1 3 2 15 mulgnn NXBN·˙X=seq1+˙×XN
19 18 oveq1d NXBN·˙X+˙X=seq1+˙×XN+˙X
20 14 17 19 3eqtr4d NXBN+1·˙X=N·˙X+˙X