Metamath Proof Explorer


Theorem mulg1

Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg1.b B=BaseG
mulg1.m ·˙=G
Assertion mulg1 XB1·˙X=X

Proof

Step Hyp Ref Expression
1 mulg1.b B=BaseG
2 mulg1.m ·˙=G
3 1nn 1
4 eqid +G=+G
5 eqid seq1+G×X=seq1+G×X
6 1 4 2 5 mulgnn 1XB1·˙X=seq1+G×X1
7 3 6 mpan XB1·˙X=seq1+G×X1
8 1z 1
9 fvconst2g XB1×X1=X
10 3 9 mpan2 XB×X1=X
11 8 10 seq1i XBseq1+G×X1=X
12 7 11 eqtrd XB1·˙X=X