Metamath Proof Explorer


Theorem mulgp1

Description: Group multiple (exponentiation) operation at a successor, extended to ZZ . (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnndir.b B=BaseG
mulgnndir.t ·˙=G
mulgnndir.p +˙=+G
Assertion mulgp1 GGrpNXBN+1·˙X=N·˙X+˙X

Proof

Step Hyp Ref Expression
1 mulgnndir.b B=BaseG
2 mulgnndir.t ·˙=G
3 mulgnndir.p +˙=+G
4 1z 1
5 1 2 3 mulgdir GGrpN1XBN+1·˙X=N·˙X+˙1·˙X
6 4 5 mp3anr2 GGrpNXBN+1·˙X=N·˙X+˙1·˙X
7 6 3impb GGrpNXBN+1·˙X=N·˙X+˙1·˙X
8 1 2 mulg1 XB1·˙X=X
9 8 3ad2ant3 GGrpNXB1·˙X=X
10 9 oveq2d GGrpNXBN·˙X+˙1·˙X=N·˙X+˙X
11 7 10 eqtrd GGrpNXBN+1·˙X=N·˙X+˙X