| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgmodid.b |
|
| 2 |
|
mulgmodid.o |
|
| 3 |
|
mulgmodid.t |
|
| 4 |
|
zre |
|
| 5 |
|
nnrp |
|
| 6 |
|
modval |
|
| 7 |
4 5 6
|
syl2an |
|
| 8 |
7
|
3ad2ant2 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
zcn |
|
| 11 |
10
|
adantr |
|
| 12 |
|
nnz |
|
| 13 |
12
|
adantl |
|
| 14 |
|
nnre |
|
| 15 |
|
nnne0 |
|
| 16 |
|
redivcl |
|
| 17 |
4 14 15 16
|
syl3an |
|
| 18 |
17
|
3anidm23 |
|
| 19 |
18
|
flcld |
|
| 20 |
13 19
|
zmulcld |
|
| 21 |
20
|
zcnd |
|
| 22 |
11 21
|
negsubd |
|
| 23 |
22
|
3ad2ant2 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
simp1 |
|
| 26 |
|
simpl |
|
| 27 |
26
|
3ad2ant2 |
|
| 28 |
13
|
3ad2ant2 |
|
| 29 |
19
|
3ad2ant2 |
|
| 30 |
28 29
|
zmulcld |
|
| 31 |
30
|
znegcld |
|
| 32 |
|
simpl |
|
| 33 |
32
|
3ad2ant3 |
|
| 34 |
|
eqid |
|
| 35 |
1 3 34
|
mulgdir |
|
| 36 |
25 27 31 33 35
|
syl13anc |
|
| 37 |
9 24 36
|
3eqtr2d |
|
| 38 |
|
nncn |
|
| 39 |
38
|
adantl |
|
| 40 |
19
|
zcnd |
|
| 41 |
39 40
|
mulneg2d |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
42
|
oveq1d |
|
| 44 |
18
|
3ad2ant2 |
|
| 45 |
44
|
flcld |
|
| 46 |
45
|
znegcld |
|
| 47 |
1 3
|
mulgassr |
|
| 48 |
25 46 28 33 47
|
syl13anc |
|
| 49 |
|
oveq2 |
|
| 50 |
49
|
adantl |
|
| 51 |
50
|
3ad2ant3 |
|
| 52 |
1 3 2
|
mulgz |
|
| 53 |
25 46 52
|
syl2anc |
|
| 54 |
48 51 53
|
3eqtrd |
|
| 55 |
43 54
|
eqtr3d |
|
| 56 |
55
|
oveq2d |
|
| 57 |
|
id |
|
| 58 |
1 3
|
mulgcl |
|
| 59 |
57 26 32 58
|
syl3an |
|
| 60 |
1 34 2
|
grprid |
|
| 61 |
25 59 60
|
syl2anc |
|
| 62 |
37 56 61
|
3eqtrd |
|