Metamath Proof Explorer


Theorem nnrp

Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008)

Ref Expression
Assertion nnrp AA+

Proof

Step Hyp Ref Expression
1 nnre AA
2 nngt0 A0<A
3 elrp A+A0<A
4 1 2 3 sylanbrc AA+