Metamath Proof Explorer


Theorem mulneg2d

Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1 φA
mulnegd.2 φB
Assertion mulneg2d φAB=AB

Proof

Step Hyp Ref Expression
1 mulm1d.1 φA
2 mulnegd.2 φB
3 mulneg2 ABAB=AB
4 1 2 3 syl2anc φAB=AB