Metamath Proof Explorer


Theorem redivcl

Description: Closure law for division of reals. (Contributed by NM, 27-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion redivcl A B B 0 A B

Proof

Step Hyp Ref Expression
1 simp1 A B B 0 A
2 1 recnd A B B 0 A
3 simp2 A B B 0 B
4 3 recnd A B B 0 B
5 simp3 A B B 0 B 0
6 divrec A B B 0 A B = A 1 B
7 2 4 5 6 syl3anc A B B 0 A B = A 1 B
8 rereccl B B 0 1 B
9 8 3adant1 A B B 0 1 B
10 1 9 remulcld A B B 0 A 1 B
11 7 10 eqeltrd A B B 0 A B