Metamath Proof Explorer


Theorem mulgaddcom

Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)

Ref Expression
Hypotheses mulgaddcom.b B=BaseG
mulgaddcom.t ·˙=G
mulgaddcom.p +˙=+G
Assertion mulgaddcom GGrpNXBN·˙X+˙X=X+˙N·˙X

Proof

Step Hyp Ref Expression
1 mulgaddcom.b B=BaseG
2 mulgaddcom.t ·˙=G
3 mulgaddcom.p +˙=+G
4 oveq1 x=0x·˙X=0·˙X
5 4 oveq1d x=0x·˙X+˙X=0·˙X+˙X
6 4 oveq2d x=0X+˙x·˙X=X+˙0·˙X
7 5 6 eqeq12d x=0x·˙X+˙X=X+˙x·˙X0·˙X+˙X=X+˙0·˙X
8 oveq1 x=yx·˙X=y·˙X
9 8 oveq1d x=yx·˙X+˙X=y·˙X+˙X
10 8 oveq2d x=yX+˙x·˙X=X+˙y·˙X
11 9 10 eqeq12d x=yx·˙X+˙X=X+˙x·˙Xy·˙X+˙X=X+˙y·˙X
12 oveq1 x=y+1x·˙X=y+1·˙X
13 12 oveq1d x=y+1x·˙X+˙X=y+1·˙X+˙X
14 12 oveq2d x=y+1X+˙x·˙X=X+˙y+1·˙X
15 13 14 eqeq12d x=y+1x·˙X+˙X=X+˙x·˙Xy+1·˙X+˙X=X+˙y+1·˙X
16 oveq1 x=yx·˙X=y·˙X
17 16 oveq1d x=yx·˙X+˙X=y·˙X+˙X
18 16 oveq2d x=yX+˙x·˙X=X+˙y·˙X
19 17 18 eqeq12d x=yx·˙X+˙X=X+˙x·˙Xy·˙X+˙X=X+˙y·˙X
20 oveq1 x=Nx·˙X=N·˙X
21 20 oveq1d x=Nx·˙X+˙X=N·˙X+˙X
22 20 oveq2d x=NX+˙x·˙X=X+˙N·˙X
23 21 22 eqeq12d x=Nx·˙X+˙X=X+˙x·˙XN·˙X+˙X=X+˙N·˙X
24 eqid 0G=0G
25 1 3 24 grplid GGrpXB0G+˙X=X
26 1 24 2 mulg0 XB0·˙X=0G
27 26 adantl GGrpXB0·˙X=0G
28 27 oveq1d GGrpXB0·˙X+˙X=0G+˙X
29 27 oveq2d GGrpXBX+˙0·˙X=X+˙0G
30 1 3 24 grprid GGrpXBX+˙0G=X
31 29 30 eqtrd GGrpXBX+˙0·˙X=X
32 25 28 31 3eqtr4d GGrpXB0·˙X+˙X=X+˙0·˙X
33 nn0z y0y
34 simp1 GGrpXByGGrp
35 simp2 GGrpXByXB
36 1 2 mulgcl GGrpyXBy·˙XB
37 36 3com23 GGrpXByy·˙XB
38 1 3 grpass GGrpXBy·˙XBXBX+˙y·˙X+˙X=X+˙y·˙X+˙X
39 34 35 37 35 38 syl13anc GGrpXByX+˙y·˙X+˙X=X+˙y·˙X+˙X
40 33 39 syl3an3 GGrpXBy0X+˙y·˙X+˙X=X+˙y·˙X+˙X
41 40 adantr GGrpXBy0y·˙X+˙X=X+˙y·˙XX+˙y·˙X+˙X=X+˙y·˙X+˙X
42 grpmnd GGrpGMnd
43 42 3ad2ant1 GGrpXBy0GMnd
44 simp3 GGrpXBy0y0
45 simp2 GGrpXBy0XB
46 1 2 3 mulgnn0p1 GMndy0XBy+1·˙X=y·˙X+˙X
47 43 44 45 46 syl3anc GGrpXBy0y+1·˙X=y·˙X+˙X
48 47 eqeq1d GGrpXBy0y+1·˙X=X+˙y·˙Xy·˙X+˙X=X+˙y·˙X
49 48 biimpar GGrpXBy0y·˙X+˙X=X+˙y·˙Xy+1·˙X=X+˙y·˙X
50 49 oveq1d GGrpXBy0y·˙X+˙X=X+˙y·˙Xy+1·˙X+˙X=X+˙y·˙X+˙X
51 47 oveq2d GGrpXBy0X+˙y+1·˙X=X+˙y·˙X+˙X
52 51 adantr GGrpXBy0y·˙X+˙X=X+˙y·˙XX+˙y+1·˙X=X+˙y·˙X+˙X
53 41 50 52 3eqtr4d GGrpXBy0y·˙X+˙X=X+˙y·˙Xy+1·˙X+˙X=X+˙y+1·˙X
54 53 ex GGrpXBy0y·˙X+˙X=X+˙y·˙Xy+1·˙X+˙X=X+˙y+1·˙X
55 54 3expia GGrpXBy0y·˙X+˙X=X+˙y·˙Xy+1·˙X+˙X=X+˙y+1·˙X
56 nnz yy
57 1 2 3 mulgaddcomlem GGrpyXBy·˙X+˙X=X+˙y·˙Xy·˙X+˙X=X+˙y·˙X
58 57 3exp1 GGrpyXBy·˙X+˙X=X+˙y·˙Xy·˙X+˙X=X+˙y·˙X
59 58 com23 GGrpXByy·˙X+˙X=X+˙y·˙Xy·˙X+˙X=X+˙y·˙X
60 59 imp GGrpXByy·˙X+˙X=X+˙y·˙Xy·˙X+˙X=X+˙y·˙X
61 56 60 syl5 GGrpXByy·˙X+˙X=X+˙y·˙Xy·˙X+˙X=X+˙y·˙X
62 7 11 15 19 23 32 55 61 zindd GGrpXBNN·˙X+˙X=X+˙N·˙X
63 62 ex GGrpXBNN·˙X+˙X=X+˙N·˙X
64 63 com23 GGrpNXBN·˙X+˙X=X+˙N·˙X
65 64 3imp GGrpNXBN·˙X+˙X=X+˙N·˙X