Description: The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgaddcom.b | |
|
mulgaddcom.t | |
||
mulgaddcom.p | |
||
Assertion | mulgaddcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgaddcom.b | |
|
2 | mulgaddcom.t | |
|
3 | mulgaddcom.p | |
|
4 | oveq1 | |
|
5 | 4 | oveq1d | |
6 | 4 | oveq2d | |
7 | 5 6 | eqeq12d | |
8 | oveq1 | |
|
9 | 8 | oveq1d | |
10 | 8 | oveq2d | |
11 | 9 10 | eqeq12d | |
12 | oveq1 | |
|
13 | 12 | oveq1d | |
14 | 12 | oveq2d | |
15 | 13 14 | eqeq12d | |
16 | oveq1 | |
|
17 | 16 | oveq1d | |
18 | 16 | oveq2d | |
19 | 17 18 | eqeq12d | |
20 | oveq1 | |
|
21 | 20 | oveq1d | |
22 | 20 | oveq2d | |
23 | 21 22 | eqeq12d | |
24 | eqid | |
|
25 | 1 3 24 | grplid | |
26 | 1 24 2 | mulg0 | |
27 | 26 | adantl | |
28 | 27 | oveq1d | |
29 | 27 | oveq2d | |
30 | 1 3 24 | grprid | |
31 | 29 30 | eqtrd | |
32 | 25 28 31 | 3eqtr4d | |
33 | nn0z | |
|
34 | simp1 | |
|
35 | simp2 | |
|
36 | 1 2 | mulgcl | |
37 | 36 | 3com23 | |
38 | 1 3 | grpass | |
39 | 34 35 37 35 38 | syl13anc | |
40 | 33 39 | syl3an3 | |
41 | 40 | adantr | |
42 | grpmnd | |
|
43 | 42 | 3ad2ant1 | |
44 | simp3 | |
|
45 | simp2 | |
|
46 | 1 2 3 | mulgnn0p1 | |
47 | 43 44 45 46 | syl3anc | |
48 | 47 | eqeq1d | |
49 | 48 | biimpar | |
50 | 49 | oveq1d | |
51 | 47 | oveq2d | |
52 | 51 | adantr | |
53 | 41 50 52 | 3eqtr4d | |
54 | 53 | ex | |
55 | 54 | 3expia | |
56 | nnz | |
|
57 | 1 2 3 | mulgaddcomlem | |
58 | 57 | 3exp1 | |
59 | 58 | com23 | |
60 | 59 | imp | |
61 | 56 60 | syl5 | |
62 | 7 11 15 19 23 32 55 61 | zindd | |
63 | 62 | ex | |
64 | 63 | com23 | |
65 | 64 | 3imp | |