Metamath Proof Explorer


Theorem grplid

Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011)

Ref Expression
Hypotheses grpbn0.b B=BaseG
grplid.p +˙=+G
grplid.o 0˙=0G
Assertion grplid GGrpXB0˙+˙X=X

Proof

Step Hyp Ref Expression
1 grpbn0.b B=BaseG
2 grplid.p +˙=+G
3 grplid.o 0˙=0G
4 grpmnd GGrpGMnd
5 1 2 3 mndlid GMndXB0˙+˙X=X
6 4 5 sylan GGrpXB0˙+˙X=X