Metamath Proof Explorer


Theorem grpmnd

Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Assertion grpmnd GGrpGMnd

Proof

Step Hyp Ref Expression
1 eqid BaseG=BaseG
2 eqid +G=+G
3 eqid 0G=0G
4 1 2 3 isgrp GGrpGMndaBaseGmBaseGm+Ga=0G
5 4 simplbi GGrpGMnd