Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | isgrp | ⊢ ( 𝐺 ∈ Grp ↔ ( 𝐺 ∈ Mnd ∧ ∀ 𝑎 ∈ ( Base ‘ 𝐺 ) ∃ 𝑚 ∈ ( Base ‘ 𝐺 ) ( 𝑚 ( +g ‘ 𝐺 ) 𝑎 ) = ( 0g ‘ 𝐺 ) ) ) | 
| 5 | 4 | simplbi | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |