| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isgrp.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							isgrp.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							isgrp.z | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  ( Base ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( Base ‘ 𝑔 )  =  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =  ( +g ‘ 𝐺 ) )  | 
						
						
							| 7 | 
							
								6 2
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( +g ‘ 𝑔 )  =   +  )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveqd | 
							⊢ ( 𝑔  =  𝐺  →  ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 )  =  ( 𝑚  +  𝑎 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑔  =  𝐺  →  ( 0g ‘ 𝑔 )  =  ( 0g ‘ 𝐺 ) )  | 
						
						
							| 10 | 
							
								9 3
							 | 
							eqtr4di | 
							⊢ ( 𝑔  =  𝐺  →  ( 0g ‘ 𝑔 )  =   0  )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							eqeq12d | 
							⊢ ( 𝑔  =  𝐺  →  ( ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 )  =  ( 0g ‘ 𝑔 )  ↔  ( 𝑚  +  𝑎 )  =   0  ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							rexeqbidv | 
							⊢ ( 𝑔  =  𝐺  →  ( ∃ 𝑚  ∈  ( Base ‘ 𝑔 ) ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 )  =  ( 0g ‘ 𝑔 )  ↔  ∃ 𝑚  ∈  𝐵 ( 𝑚  +  𝑎 )  =   0  ) )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							raleqbidv | 
							⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∃ 𝑚  ∈  ( Base ‘ 𝑔 ) ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 )  =  ( 0g ‘ 𝑔 )  ↔  ∀ 𝑎  ∈  𝐵 ∃ 𝑚  ∈  𝐵 ( 𝑚  +  𝑎 )  =   0  ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-grp | 
							⊢ Grp  =  { 𝑔  ∈  Mnd  ∣  ∀ 𝑎  ∈  ( Base ‘ 𝑔 ) ∃ 𝑚  ∈  ( Base ‘ 𝑔 ) ( 𝑚 ( +g ‘ 𝑔 ) 𝑎 )  =  ( 0g ‘ 𝑔 ) }  | 
						
						
							| 15 | 
							
								13 14
							 | 
							elrab2 | 
							⊢ ( 𝐺  ∈  Grp  ↔  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑎  ∈  𝐵 ∃ 𝑚  ∈  𝐵 ( 𝑚  +  𝑎 )  =   0  ) )  |