Metamath Proof Explorer


Theorem isgrp

Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses isgrp.b B=BaseG
isgrp.p +˙=+G
isgrp.z 0˙=0G
Assertion isgrp GGrpGMndaBmBm+˙a=0˙

Proof

Step Hyp Ref Expression
1 isgrp.b B=BaseG
2 isgrp.p +˙=+G
3 isgrp.z 0˙=0G
4 fveq2 g=GBaseg=BaseG
5 4 1 eqtr4di g=GBaseg=B
6 fveq2 g=G+g=+G
7 6 2 eqtr4di g=G+g=+˙
8 7 oveqd g=Gm+ga=m+˙a
9 fveq2 g=G0g=0G
10 9 3 eqtr4di g=G0g=0˙
11 8 10 eqeq12d g=Gm+ga=0gm+˙a=0˙
12 5 11 rexeqbidv g=GmBasegm+ga=0gmBm+˙a=0˙
13 5 12 raleqbidv g=GaBasegmBasegm+ga=0gaBmBm+˙a=0˙
14 df-grp Grp=gMnd|aBasegmBasegm+ga=0g
15 13 14 elrab2 GGrpGMndaBmBm+˙a=0˙