Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | grpmnd | |- ( G e. Grp -> G e. Mnd )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( Base ` G ) = ( Base ` G )  | 
						|
| 2 | eqid | |- ( +g ` G ) = ( +g ` G )  | 
						|
| 3 | eqid | |- ( 0g ` G ) = ( 0g ` G )  | 
						|
| 4 | 1 2 3 | isgrp | |- ( G e. Grp <-> ( G e. Mnd /\ A. a e. ( Base ` G ) E. m e. ( Base ` G ) ( m ( +g ` G ) a ) = ( 0g ` G ) ) )  | 
						
| 5 | 4 | simplbi | |- ( G e. Grp -> G e. Mnd )  |