| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgpropd.m |
|
| 2 |
|
mulgpropd.n |
|
| 3 |
|
mulgpropd.b1 |
|
| 4 |
|
mulgpropd.b2 |
|
| 5 |
|
mulgpropd.i |
|
| 6 |
|
mulgpropd.k |
|
| 7 |
|
mulgpropd.e |
|
| 8 |
|
ssel |
|
| 9 |
|
ssel |
|
| 10 |
8 9
|
anim12d |
|
| 11 |
5 10
|
syl |
|
| 12 |
11
|
imp |
|
| 13 |
12 7
|
syldan |
|
| 14 |
3 4 13
|
grpidpropd |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
|
1zzd |
|
| 17 |
|
vex |
|
| 18 |
17
|
fvconst2 |
|
| 19 |
|
nnuz |
|
| 20 |
19
|
eqcomi |
|
| 21 |
18 20
|
eleq2s |
|
| 22 |
21
|
adantl |
|
| 23 |
5
|
3ad2ant1 |
|
| 24 |
|
simp3 |
|
| 25 |
23 24
|
sseldd |
|
| 26 |
25
|
adantr |
|
| 27 |
22 26
|
eqeltrd |
|
| 28 |
6
|
3ad2antl1 |
|
| 29 |
7
|
3ad2antl1 |
|
| 30 |
16 27 28 29
|
seqfeq3 |
|
| 31 |
30
|
fveq1d |
|
| 32 |
3 4 13
|
grpinvpropd |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
30
|
fveq1d |
|
| 35 |
33 34
|
fveq12d |
|
| 36 |
31 35
|
ifeq12d |
|
| 37 |
15 36
|
ifeq12d |
|
| 38 |
37
|
mpoeq3dva |
|
| 39 |
|
eqidd |
|
| 40 |
|
eqidd |
|
| 41 |
39 3 40
|
mpoeq123dv |
|
| 42 |
|
eqidd |
|
| 43 |
39 4 42
|
mpoeq123dv |
|
| 44 |
38 41 43
|
3eqtr3d |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
45 46 47 48 1
|
mulgfval |
|
| 50 |
|
eqid |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
50 51 52 53 2
|
mulgfval |
|
| 55 |
44 49 54
|
3eqtr4g |
|