Metamath Proof Explorer


Theorem seqfeq3

Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses seqfeq3.m φM
seqfeq3.f φxMFxS
seqfeq3.cl φxSySx+˙yS
seqfeq3.id φxSySx+˙y=xQy
Assertion seqfeq3 φseqM+˙F=seqMQF

Proof

Step Hyp Ref Expression
1 seqfeq3.m φM
2 seqfeq3.f φxMFxS
3 seqfeq3.cl φxSySx+˙yS
4 seqfeq3.id φxSySx+˙y=xQy
5 seqfn MseqM+˙FFnM
6 1 5 syl φseqM+˙FFnM
7 seqfn MseqMQFFnM
8 1 7 syl φseqMQFFnM
9 simpr φaMaM
10 simpll φaMxMaφ
11 elfzuz xMaxM
12 11 adantl φaMxMaxM
13 10 12 2 syl2anc φaMxMaFxS
14 3 adantlr φaMxSySx+˙yS
15 4 adantlr φaMxSySx+˙y=xQy
16 9 13 14 15 seqfeq4 φaMseqM+˙Fa=seqMQFa
17 6 8 16 eqfnfvd φseqM+˙F=seqMQF