Metamath Proof Explorer


Theorem seqfn

Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion seqfn M seq M + ˙ F Fn M

Proof

Step Hyp Ref Expression
1 seqeq1 M = if M M 0 seq M + ˙ F = seq if M M 0 + ˙ F
2 fveq2 M = if M M 0 M = if M M 0
3 1 2 fneq12d M = if M M 0 seq M + ˙ F Fn M seq if M M 0 + ˙ F Fn if M M 0
4 0z 0
5 4 elimel if M M 0
6 eqid rec x V x + 1 if M M 0 ω = rec x V x + 1 if M M 0 ω
7 fvex F if M M 0 V
8 eqid rec x V , y V x + 1 x z V , w V w + ˙ F z + 1 y if M M 0 F if M M 0 ω = rec x V , y V x + 1 x z V , w V w + ˙ F z + 1 y if M M 0 F if M M 0 ω
9 8 seqval seq if M M 0 + ˙ F = ran rec x V , y V x + 1 x z V , w V w + ˙ F z + 1 y if M M 0 F if M M 0 ω
10 5 6 7 8 9 uzrdgfni seq if M M 0 + ˙ F Fn if M M 0
11 3 10 dedth M seq M + ˙ F Fn M