Metamath Proof Explorer


Theorem seqfn

Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion seqfn MseqM+˙FFnM

Proof

Step Hyp Ref Expression
1 seqeq1 M=ifMM0seqM+˙F=seqifMM0+˙F
2 fveq2 M=ifMM0M=ifMM0
3 1 2 fneq12d M=ifMM0seqM+˙FFnMseqifMM0+˙FFnifMM0
4 0z 0
5 4 elimel ifMM0
6 eqid recxVx+1ifMM0ω=recxVx+1ifMM0ω
7 fvex FifMM0V
8 eqid recxV,yVx+1xzV,wVw+˙Fz+1yifMM0FifMM0ω=recxV,yVx+1xzV,wVw+˙Fz+1yifMM0FifMM0ω
9 8 seqval seqifMM0+˙F=ranrecxV,yVx+1xzV,wVw+˙Fz+1yifMM0FifMM0ω
10 5 6 7 8 9 uzrdgfni seqifMM0+˙FFnifMM0
11 3 10 dedth MseqM+˙FFnM