Metamath Proof Explorer


Theorem seqfeq4

Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses seqfeq4.m φNM
seqfeq4.f φxMNFxS
seqfeq4.cl φxSySx+˙yS
seqfeq4.id φxSySx+˙y=xQy
Assertion seqfeq4 φseqM+˙FN=seqMQFN

Proof

Step Hyp Ref Expression
1 seqfeq4.m φNM
2 seqfeq4.f φxMNFxS
3 seqfeq4.cl φxSySx+˙yS
4 seqfeq4.id φxSySx+˙y=xQy
5 fvex seqM+˙FNV
6 fvi seqM+˙FNVIseqM+˙FN=seqM+˙FN
7 5 6 ax-mp IseqM+˙FN=seqM+˙FN
8 ovex x+˙yV
9 fvi x+˙yVIx+˙y=x+˙y
10 8 9 ax-mp Ix+˙y=x+˙y
11 fvi xVIx=x
12 11 elv Ix=x
13 fvi yVIy=y
14 13 elv Iy=y
15 12 14 oveq12i IxQIy=xQy
16 4 10 15 3eqtr4g φxSySIx+˙y=IxQIy
17 fvex FxV
18 fvi FxVIFx=Fx
19 17 18 mp1i φxMNIFx=Fx
20 3 2 1 16 19 seqhomo φIseqM+˙FN=seqMQFN
21 7 20 eqtr3id φseqM+˙FN=seqMQFN