Metamath Proof Explorer


Theorem seqhomo

Description: Apply a homomorphism to a sequence. (Contributed by Mario Carneiro, 28-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqhomo.1 φ x S y S x + ˙ y S
seqhomo.2 φ x M N F x S
seqhomo.3 φ N M
seqhomo.4 φ x S y S H x + ˙ y = H x Q H y
seqhomo.5 φ x M N H F x = G x
Assertion seqhomo φ H seq M + ˙ F N = seq M Q G N

Proof

Step Hyp Ref Expression
1 seqhomo.1 φ x S y S x + ˙ y S
2 seqhomo.2 φ x M N F x S
3 seqhomo.3 φ N M
4 seqhomo.4 φ x S y S H x + ˙ y = H x Q H y
5 seqhomo.5 φ x M N H F x = G x
6 eluzfz2 N M N M N
7 3 6 syl φ N M N
8 eleq1 x = M x M N M M N
9 2fveq3 x = M H seq M + ˙ F x = H seq M + ˙ F M
10 fveq2 x = M seq M Q G x = seq M Q G M
11 9 10 eqeq12d x = M H seq M + ˙ F x = seq M Q G x H seq M + ˙ F M = seq M Q G M
12 8 11 imbi12d x = M x M N H seq M + ˙ F x = seq M Q G x M M N H seq M + ˙ F M = seq M Q G M
13 12 imbi2d x = M φ x M N H seq M + ˙ F x = seq M Q G x φ M M N H seq M + ˙ F M = seq M Q G M
14 eleq1 x = n x M N n M N
15 2fveq3 x = n H seq M + ˙ F x = H seq M + ˙ F n
16 fveq2 x = n seq M Q G x = seq M Q G n
17 15 16 eqeq12d x = n H seq M + ˙ F x = seq M Q G x H seq M + ˙ F n = seq M Q G n
18 14 17 imbi12d x = n x M N H seq M + ˙ F x = seq M Q G x n M N H seq M + ˙ F n = seq M Q G n
19 18 imbi2d x = n φ x M N H seq M + ˙ F x = seq M Q G x φ n M N H seq M + ˙ F n = seq M Q G n
20 eleq1 x = n + 1 x M N n + 1 M N
21 2fveq3 x = n + 1 H seq M + ˙ F x = H seq M + ˙ F n + 1
22 fveq2 x = n + 1 seq M Q G x = seq M Q G n + 1
23 21 22 eqeq12d x = n + 1 H seq M + ˙ F x = seq M Q G x H seq M + ˙ F n + 1 = seq M Q G n + 1
24 20 23 imbi12d x = n + 1 x M N H seq M + ˙ F x = seq M Q G x n + 1 M N H seq M + ˙ F n + 1 = seq M Q G n + 1
25 24 imbi2d x = n + 1 φ x M N H seq M + ˙ F x = seq M Q G x φ n + 1 M N H seq M + ˙ F n + 1 = seq M Q G n + 1
26 eleq1 x = N x M N N M N
27 2fveq3 x = N H seq M + ˙ F x = H seq M + ˙ F N
28 fveq2 x = N seq M Q G x = seq M Q G N
29 27 28 eqeq12d x = N H seq M + ˙ F x = seq M Q G x H seq M + ˙ F N = seq M Q G N
30 26 29 imbi12d x = N x M N H seq M + ˙ F x = seq M Q G x N M N H seq M + ˙ F N = seq M Q G N
31 30 imbi2d x = N φ x M N H seq M + ˙ F x = seq M Q G x φ N M N H seq M + ˙ F N = seq M Q G N
32 2fveq3 x = M H F x = H F M
33 fveq2 x = M G x = G M
34 32 33 eqeq12d x = M H F x = G x H F M = G M
35 5 ralrimiva φ x M N H F x = G x
36 eluzfz1 N M M M N
37 3 36 syl φ M M N
38 34 35 37 rspcdva φ H F M = G M
39 eluzel2 N M M
40 seq1 M seq M + ˙ F M = F M
41 3 39 40 3syl φ seq M + ˙ F M = F M
42 41 fveq2d φ H seq M + ˙ F M = H F M
43 seq1 M seq M Q G M = G M
44 3 39 43 3syl φ seq M Q G M = G M
45 38 42 44 3eqtr4d φ H seq M + ˙ F M = seq M Q G M
46 45 a1d φ M M N H seq M + ˙ F M = seq M Q G M
47 peano2fzr n M n + 1 M N n M N
48 47 adantl φ n M n + 1 M N n M N
49 48 expr φ n M n + 1 M N n M N
50 49 imim1d φ n M n M N H seq M + ˙ F n = seq M Q G n n + 1 M N H seq M + ˙ F n = seq M Q G n
51 oveq1 H seq M + ˙ F n = seq M Q G n H seq M + ˙ F n Q G n + 1 = seq M Q G n Q G n + 1
52 seqp1 n M seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
53 52 ad2antrl φ n M n + 1 M N seq M + ˙ F n + 1 = seq M + ˙ F n + ˙ F n + 1
54 53 fveq2d φ n M n + 1 M N H seq M + ˙ F n + 1 = H seq M + ˙ F n + ˙ F n + 1
55 4 ralrimivva φ x S y S H x + ˙ y = H x Q H y
56 55 adantr φ n M n + 1 M N x S y S H x + ˙ y = H x Q H y
57 simprl φ n M n + 1 M N n M
58 elfzuz3 n M N N n
59 fzss2 N n M n M N
60 48 58 59 3syl φ n M n + 1 M N M n M N
61 60 sselda φ n M n + 1 M N x M n x M N
62 2 adantlr φ n M n + 1 M N x M N F x S
63 61 62 syldan φ n M n + 1 M N x M n F x S
64 1 adantlr φ n M n + 1 M N x S y S x + ˙ y S
65 57 63 64 seqcl φ n M n + 1 M N seq M + ˙ F n S
66 fveq2 x = n + 1 F x = F n + 1
67 66 eleq1d x = n + 1 F x S F n + 1 S
68 2 ralrimiva φ x M N F x S
69 68 adantr φ n M n + 1 M N x M N F x S
70 simprr φ n M n + 1 M N n + 1 M N
71 67 69 70 rspcdva φ n M n + 1 M N F n + 1 S
72 fvoveq1 x = seq M + ˙ F n H x + ˙ y = H seq M + ˙ F n + ˙ y
73 fveq2 x = seq M + ˙ F n H x = H seq M + ˙ F n
74 73 oveq1d x = seq M + ˙ F n H x Q H y = H seq M + ˙ F n Q H y
75 72 74 eqeq12d x = seq M + ˙ F n H x + ˙ y = H x Q H y H seq M + ˙ F n + ˙ y = H seq M + ˙ F n Q H y
76 oveq2 y = F n + 1 seq M + ˙ F n + ˙ y = seq M + ˙ F n + ˙ F n + 1
77 76 fveq2d y = F n + 1 H seq M + ˙ F n + ˙ y = H seq M + ˙ F n + ˙ F n + 1
78 fveq2 y = F n + 1 H y = H F n + 1
79 78 oveq2d y = F n + 1 H seq M + ˙ F n Q H y = H seq M + ˙ F n Q H F n + 1
80 77 79 eqeq12d y = F n + 1 H seq M + ˙ F n + ˙ y = H seq M + ˙ F n Q H y H seq M + ˙ F n + ˙ F n + 1 = H seq M + ˙ F n Q H F n + 1
81 75 80 rspc2v seq M + ˙ F n S F n + 1 S x S y S H x + ˙ y = H x Q H y H seq M + ˙ F n + ˙ F n + 1 = H seq M + ˙ F n Q H F n + 1
82 65 71 81 syl2anc φ n M n + 1 M N x S y S H x + ˙ y = H x Q H y H seq M + ˙ F n + ˙ F n + 1 = H seq M + ˙ F n Q H F n + 1
83 56 82 mpd φ n M n + 1 M N H seq M + ˙ F n + ˙ F n + 1 = H seq M + ˙ F n Q H F n + 1
84 2fveq3 x = n + 1 H F x = H F n + 1
85 fveq2 x = n + 1 G x = G n + 1
86 84 85 eqeq12d x = n + 1 H F x = G x H F n + 1 = G n + 1
87 35 adantr φ n M n + 1 M N x M N H F x = G x
88 86 87 70 rspcdva φ n M n + 1 M N H F n + 1 = G n + 1
89 88 oveq2d φ n M n + 1 M N H seq M + ˙ F n Q H F n + 1 = H seq M + ˙ F n Q G n + 1
90 54 83 89 3eqtrd φ n M n + 1 M N H seq M + ˙ F n + 1 = H seq M + ˙ F n Q G n + 1
91 seqp1 n M seq M Q G n + 1 = seq M Q G n Q G n + 1
92 91 ad2antrl φ n M n + 1 M N seq M Q G n + 1 = seq M Q G n Q G n + 1
93 90 92 eqeq12d φ n M n + 1 M N H seq M + ˙ F n + 1 = seq M Q G n + 1 H seq M + ˙ F n Q G n + 1 = seq M Q G n Q G n + 1
94 51 93 syl5ibr φ n M n + 1 M N H seq M + ˙ F n = seq M Q G n H seq M + ˙ F n + 1 = seq M Q G n + 1
95 50 94 animpimp2impd n M φ n M N H seq M + ˙ F n = seq M Q G n φ n + 1 M N H seq M + ˙ F n + 1 = seq M Q G n + 1
96 13 19 25 31 46 95 uzind4i N M φ N M N H seq M + ˙ F N = seq M Q G N
97 3 96 mpcom φ N M N H seq M + ˙ F N = seq M Q G N
98 7 97 mpd φ H seq M + ˙ F N = seq M Q G N