Metamath Proof Explorer


Theorem seqz

Description: If the operation .+ has an absorbing element Z (a.k.a. zero element), then any sequence containing a Z evaluates to Z . (Contributed by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqhomo.1 φ x S y S x + ˙ y S
seqhomo.2 φ x M N F x S
seqz.3 φ x S Z + ˙ x = Z
seqz.4 φ x S x + ˙ Z = Z
seqz.5 φ K M N
seqz.6 φ N V
seqz.7 φ F K = Z
Assertion seqz φ seq M + ˙ F N = Z

Proof

Step Hyp Ref Expression
1 seqhomo.1 φ x S y S x + ˙ y S
2 seqhomo.2 φ x M N F x S
3 seqz.3 φ x S Z + ˙ x = Z
4 seqz.4 φ x S x + ˙ Z = Z
5 seqz.5 φ K M N
6 seqz.6 φ N V
7 seqz.7 φ F K = Z
8 elfzuz K M N K M
9 5 8 syl φ K M
10 eluzelz K M K
11 9 10 syl φ K
12 seq1 K seq K + ˙ F K = F K
13 11 12 syl φ seq K + ˙ F K = F K
14 13 7 eqtrd φ seq K + ˙ F K = Z
15 seqeq1 K = M seq K + ˙ F = seq M + ˙ F
16 15 fveq1d K = M seq K + ˙ F K = seq M + ˙ F K
17 16 eqeq1d K = M seq K + ˙ F K = Z seq M + ˙ F K = Z
18 14 17 syl5ibcom φ K = M seq M + ˙ F K = Z
19 eluzel2 K M M
20 9 19 syl φ M
21 seqm1 M K M + 1 seq M + ˙ F K = seq M + ˙ F K 1 + ˙ F K
22 20 21 sylan φ K M + 1 seq M + ˙ F K = seq M + ˙ F K 1 + ˙ F K
23 7 adantr φ K M + 1 F K = Z
24 23 oveq2d φ K M + 1 seq M + ˙ F K 1 + ˙ F K = seq M + ˙ F K 1 + ˙ Z
25 oveq1 x = seq M + ˙ F K 1 x + ˙ Z = seq M + ˙ F K 1 + ˙ Z
26 25 eqeq1d x = seq M + ˙ F K 1 x + ˙ Z = Z seq M + ˙ F K 1 + ˙ Z = Z
27 4 ralrimiva φ x S x + ˙ Z = Z
28 27 adantr φ K M + 1 x S x + ˙ Z = Z
29 eluzp1m1 M K M + 1 K 1 M
30 20 29 sylan φ K M + 1 K 1 M
31 fzssp1 M K 1 M K - 1 + 1
32 11 zcnd φ K
33 ax-1cn 1
34 npcan K 1 K - 1 + 1 = K
35 32 33 34 sylancl φ K - 1 + 1 = K
36 35 oveq2d φ M K - 1 + 1 = M K
37 31 36 sseqtrid φ M K 1 M K
38 elfzuz3 K M N N K
39 5 38 syl φ N K
40 fzss2 N K M K M N
41 39 40 syl φ M K M N
42 37 41 sstrd φ M K 1 M N
43 42 adantr φ K M + 1 M K 1 M N
44 43 sselda φ K M + 1 x M K 1 x M N
45 2 adantlr φ K M + 1 x M N F x S
46 44 45 syldan φ K M + 1 x M K 1 F x S
47 1 adantlr φ K M + 1 x S y S x + ˙ y S
48 30 46 47 seqcl φ K M + 1 seq M + ˙ F K 1 S
49 26 28 48 rspcdva φ K M + 1 seq M + ˙ F K 1 + ˙ Z = Z
50 24 49 eqtrd φ K M + 1 seq M + ˙ F K 1 + ˙ F K = Z
51 22 50 eqtrd φ K M + 1 seq M + ˙ F K = Z
52 51 ex φ K M + 1 seq M + ˙ F K = Z
53 uzp1 K M K = M K M + 1
54 9 53 syl φ K = M K M + 1
55 18 52 54 mpjaod φ seq M + ˙ F K = Z
56 55 7 eqtr4d φ seq M + ˙ F K = F K
57 eqidd φ x K + 1 N F x = F x
58 9 56 39 57 seqfveq2 φ seq M + ˙ F N = seq K + ˙ F N
59 fvex F K V
60 59 elsn F K Z F K = Z
61 7 60 sylibr φ F K Z
62 simprl φ x Z y S x Z
63 velsn x Z x = Z
64 62 63 sylib φ x Z y S x = Z
65 64 oveq1d φ x Z y S x + ˙ y = Z + ˙ y
66 oveq2 x = y Z + ˙ x = Z + ˙ y
67 66 eqeq1d x = y Z + ˙ x = Z Z + ˙ y = Z
68 3 ralrimiva φ x S Z + ˙ x = Z
69 68 adantr φ x Z y S x S Z + ˙ x = Z
70 simprr φ x Z y S y S
71 67 69 70 rspcdva φ x Z y S Z + ˙ y = Z
72 65 71 eqtrd φ x Z y S x + ˙ y = Z
73 ovex x + ˙ y V
74 73 elsn x + ˙ y Z x + ˙ y = Z
75 72 74 sylibr φ x Z y S x + ˙ y Z
76 peano2uz K M K + 1 M
77 9 76 syl φ K + 1 M
78 fzss1 K + 1 M K + 1 N M N
79 77 78 syl φ K + 1 N M N
80 79 sselda φ x K + 1 N x M N
81 80 2 syldan φ x K + 1 N F x S
82 61 75 39 81 seqcl2 φ seq K + ˙ F N Z
83 elsni seq K + ˙ F N Z seq K + ˙ F N = Z
84 82 83 syl φ seq K + ˙ F N = Z
85 58 84 eqtrd φ seq M + ˙ F N = Z