Metamath Proof Explorer


Theorem grpinvpropd

Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses grpinvpropd.1 φ B = Base K
grpinvpropd.2 φ B = Base L
grpinvpropd.3 φ x B y B x + K y = x + L y
Assertion grpinvpropd φ inv g K = inv g L

Proof

Step Hyp Ref Expression
1 grpinvpropd.1 φ B = Base K
2 grpinvpropd.2 φ B = Base L
3 grpinvpropd.3 φ x B y B x + K y = x + L y
4 1 2 3 grpidpropd φ 0 K = 0 L
5 4 adantr φ x B y B 0 K = 0 L
6 3 5 eqeq12d φ x B y B x + K y = 0 K x + L y = 0 L
7 6 anass1rs φ y B x B x + K y = 0 K x + L y = 0 L
8 7 riotabidva φ y B ι x B | x + K y = 0 K = ι x B | x + L y = 0 L
9 8 mpteq2dva φ y B ι x B | x + K y = 0 K = y B ι x B | x + L y = 0 L
10 1 riotaeqdv φ ι x B | x + K y = 0 K = ι x Base K | x + K y = 0 K
11 1 10 mpteq12dv φ y B ι x B | x + K y = 0 K = y Base K ι x Base K | x + K y = 0 K
12 2 riotaeqdv φ ι x B | x + L y = 0 L = ι x Base L | x + L y = 0 L
13 2 12 mpteq12dv φ y B ι x B | x + L y = 0 L = y Base L ι x Base L | x + L y = 0 L
14 9 11 13 3eqtr3d φ y Base K ι x Base K | x + K y = 0 K = y Base L ι x Base L | x + L y = 0 L
15 eqid Base K = Base K
16 eqid + K = + K
17 eqid 0 K = 0 K
18 eqid inv g K = inv g K
19 15 16 17 18 grpinvfval inv g K = y Base K ι x Base K | x + K y = 0 K
20 eqid Base L = Base L
21 eqid + L = + L
22 eqid 0 L = 0 L
23 eqid inv g L = inv g L
24 20 21 22 23 grpinvfval inv g L = y Base L ι x Base L | x + L y = 0 L
25 14 19 24 3eqtr4g φ inv g K = inv g L