Metamath Proof Explorer


Theorem grpinvpropd

Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses grpinvpropd.1 φB=BaseK
grpinvpropd.2 φB=BaseL
grpinvpropd.3 φxByBx+Ky=x+Ly
Assertion grpinvpropd φinvgK=invgL

Proof

Step Hyp Ref Expression
1 grpinvpropd.1 φB=BaseK
2 grpinvpropd.2 φB=BaseL
3 grpinvpropd.3 φxByBx+Ky=x+Ly
4 1 2 3 grpidpropd φ0K=0L
5 4 adantr φxByB0K=0L
6 3 5 eqeq12d φxByBx+Ky=0Kx+Ly=0L
7 6 anass1rs φyBxBx+Ky=0Kx+Ly=0L
8 7 riotabidva φyBιxB|x+Ky=0K=ιxB|x+Ly=0L
9 8 mpteq2dva φyBιxB|x+Ky=0K=yBιxB|x+Ly=0L
10 1 riotaeqdv φιxB|x+Ky=0K=ιxBaseK|x+Ky=0K
11 1 10 mpteq12dv φyBιxB|x+Ky=0K=yBaseKιxBaseK|x+Ky=0K
12 2 riotaeqdv φιxB|x+Ly=0L=ιxBaseL|x+Ly=0L
13 2 12 mpteq12dv φyBιxB|x+Ly=0L=yBaseLιxBaseL|x+Ly=0L
14 9 11 13 3eqtr3d φyBaseKιxBaseK|x+Ky=0K=yBaseLιxBaseL|x+Ly=0L
15 eqid BaseK=BaseK
16 eqid +K=+K
17 eqid 0K=0K
18 eqid invgK=invgK
19 15 16 17 18 grpinvfval invgK=yBaseKιxBaseK|x+Ky=0K
20 eqid BaseL=BaseL
21 eqid +L=+L
22 eqid 0L=0L
23 eqid invgL=invgL
24 20 21 22 23 grpinvfval invgL=yBaseLιxBaseL|x+Ly=0L
25 14 19 24 3eqtr4g φinvgK=invgL