Metamath Proof Explorer


Theorem grpinvpropd

Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014) (Revised by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses grpinvpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
grpinvpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
grpinvpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
Assertion grpinvpropd ( 𝜑 → ( invg𝐾 ) = ( invg𝐿 ) )

Proof

Step Hyp Ref Expression
1 grpinvpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 grpinvpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 grpinvpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 𝑥 ( +g𝐿 ) 𝑦 ) )
4 1 2 3 grpidpropd ( 𝜑 → ( 0g𝐾 ) = ( 0g𝐿 ) )
5 4 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 0g𝐾 ) = ( 0g𝐿 ) )
6 3 5 eqeq12d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ↔ ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) )
7 6 anass1rs ( ( ( 𝜑𝑦𝐵 ) ∧ 𝑥𝐵 ) → ( ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ↔ ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) )
8 7 riotabidva ( ( 𝜑𝑦𝐵 ) → ( 𝑥𝐵 ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) = ( 𝑥𝐵 ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) )
9 8 mpteq2dva ( 𝜑 → ( 𝑦𝐵 ↦ ( 𝑥𝐵 ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) ) = ( 𝑦𝐵 ↦ ( 𝑥𝐵 ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) ) )
10 1 riotaeqdv ( 𝜑 → ( 𝑥𝐵 ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) )
11 1 10 mpteq12dv ( 𝜑 → ( 𝑦𝐵 ↦ ( 𝑥𝐵 ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) ) )
12 2 riotaeqdv ( 𝜑 → ( 𝑥𝐵 ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) )
13 2 12 mpteq12dv ( 𝜑 → ( 𝑦𝐵 ↦ ( 𝑥𝐵 ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) ) )
14 9 11 13 3eqtr3d ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) ) )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 eqid ( +g𝐾 ) = ( +g𝐾 )
17 eqid ( 0g𝐾 ) = ( 0g𝐾 )
18 eqid ( invg𝐾 ) = ( invg𝐾 )
19 15 16 17 18 grpinvfval ( invg𝐾 ) = ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g𝐾 ) 𝑦 ) = ( 0g𝐾 ) ) )
20 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
21 eqid ( +g𝐿 ) = ( +g𝐿 )
22 eqid ( 0g𝐿 ) = ( 0g𝐿 )
23 eqid ( invg𝐿 ) = ( invg𝐿 )
24 20 21 22 23 grpinvfval ( invg𝐿 ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g𝐿 ) 𝑦 ) = ( 0g𝐿 ) ) )
25 14 19 24 3eqtr4g ( 𝜑 → ( invg𝐾 ) = ( invg𝐿 ) )