Step |
Hyp |
Ref |
Expression |
1 |
|
grpinvpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
grpinvpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
grpinvpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) |
4 |
1 2 3
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐿 ) ) |
6 |
3 5
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
7 |
6
|
anass1rs |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ↔ ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
8 |
7
|
riotabidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) = ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
9 |
8
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) = ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
10 |
1
|
riotaeqdv |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
11 |
1 10
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) ) |
12 |
2
|
riotaeqdv |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) = ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
13 |
2 12
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
14 |
9 11 13
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
18 |
|
eqid |
⊢ ( invg ‘ 𝐾 ) = ( invg ‘ 𝐾 ) |
19 |
15 16 17 18
|
grpinvfval |
⊢ ( invg ‘ 𝐾 ) = ( 𝑦 ∈ ( Base ‘ 𝐾 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
21 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
22 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
23 |
|
eqid |
⊢ ( invg ‘ 𝐿 ) = ( invg ‘ 𝐿 ) |
24 |
20 21 22 23
|
grpinvfval |
⊢ ( invg ‘ 𝐿 ) = ( 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) = ( 0g ‘ 𝐿 ) ) ) |
25 |
14 19 24
|
3eqtr4g |
⊢ ( 𝜑 → ( invg ‘ 𝐾 ) = ( invg ‘ 𝐿 ) ) |