| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpidssd.m |
⊢ ( 𝜑 → 𝑀 ∈ Grp ) |
| 2 |
|
grpidssd.s |
⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 3 |
|
grpidssd.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 4 |
|
grpidssd.c |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑀 ) ) |
| 5 |
|
grpidssd.o |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 7 |
3 6
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ 𝐵 ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = ( 0g ‘ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ↔ ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝑆 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝑆 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) |
| 14 |
12 13
|
eqeq12d |
⊢ ( 𝑦 = ( 0g ‘ 𝑆 ) → ( ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) 𝑦 ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) 𝑦 ) ↔ ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) ) |
| 15 |
11 14
|
rspc2va |
⊢ ( ( ( ( 0g ‘ 𝑆 ) ∈ 𝐵 ∧ ( 0g ‘ 𝑆 ) ∈ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) |
| 16 |
8 8 5 15
|
syl21anc |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) = ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 18 |
3 17 6
|
grplid |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 0g ‘ 𝑆 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ) |
| 19 |
2 7 18
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑆 ) ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ) |
| 20 |
16 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ) |
| 21 |
4 8
|
sseldd |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑀 ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 23 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 25 |
22 23 24
|
grpidlcan |
⊢ ( ( 𝑀 ∈ Grp ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑆 ) ∈ ( Base ‘ 𝑀 ) ) → ( ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ↔ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) ) ) |
| 26 |
1 21 21 25
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 0g ‘ 𝑆 ) ( +g ‘ 𝑀 ) ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑆 ) ↔ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) ) ) |
| 27 |
20 26
|
mpbid |
⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑀 ) ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑆 ) ) |