Metamath Proof Explorer


Theorem grpidcl

Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses grpidcl.b 𝐵 = ( Base ‘ 𝐺 )
grpidcl.o 0 = ( 0g𝐺 )
Assertion grpidcl ( 𝐺 ∈ Grp → 0𝐵 )

Proof

Step Hyp Ref Expression
1 grpidcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpidcl.o 0 = ( 0g𝐺 )
3 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
4 1 2 mndidcl ( 𝐺 ∈ Mnd → 0𝐵 )
5 3 4 syl ( 𝐺 ∈ Grp → 0𝐵 )