Metamath Proof Explorer
		
		
		
		Description:  The identity element of a monoid belongs to the monoid.  (Contributed by NM, 27-Aug-2011)  (Revised by Mario Carneiro, 27-Dec-2014)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						mndidcl.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						mndidcl.o | 
						⊢  0   =  ( 0g ‘ 𝐺 )  | 
					
				
					 | 
					Assertion | 
					mndidcl | 
					⊢  ( 𝐺  ∈  Mnd  →   0   ∈  𝐵 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mndidcl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							mndidcl.o | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							mndid | 
							⊢ ( 𝐺  ∈  Mnd  →  ∃ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑦  ∧  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑦 ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							mgmidcl | 
							⊢ ( 𝐺  ∈  Mnd  →   0   ∈  𝐵 )  |