Metamath Proof Explorer


Theorem mndidcl

Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses mndidcl.b B=BaseG
mndidcl.o 0˙=0G
Assertion mndidcl GMnd0˙B

Proof

Step Hyp Ref Expression
1 mndidcl.b B=BaseG
2 mndidcl.o 0˙=0G
3 eqid +G=+G
4 1 3 mndid GMndxByBx+Gy=yy+Gx=y
5 1 2 3 4 mgmidcl GMnd0˙B